A4 (B5 Platform) Discussion Discussion forum for the B5 Audi A4 produced from 1995-2001 B5 FAQ

Thick vs Thin oil.

Thread Tools
 
Search this Thread
 
Old 01-27-2005, 08:18 PM
  #1  
AudiWorld Super User
Thread Starter
 
Audi Junkie's Avatar
 
Join Date: Nov 2001
Posts: 19,237
Received 9 Likes on 8 Posts
Default Thick vs Thin oil.

Lighter weight oil is definately the trend. Overseas and in the USA too. 0w-30 is the main racing viscosity due to reduced drag,(Team Abt/SLX, DTM) and it is the best formula for long life because of resistance to thickening (Audi Flexible Service System). 0w- oils represent a new generation, as many already know.

The "W" rating means it is thin while cold,(extreeeemely important in a turbo) the second number is the thickness in the antiquated sae system at operating temp, +100f/+212c. Not much more I can do to prime the pump, either you are into it and get it, or not. It seem intuitive, at the same pressure, I can flow more Vodka into my White Russian than Kaluha...especially at low temps. These articles make the case that lighter oils do more good (flow, cooling, drag, friction, wear, mpg, power) over their operating range (start-up and warm-up and cruise) and thick oils only perform their function under extreme film pressure levels (mega-boost) and there are EP/AW additives in oil that deal with that situation anyway.(diesel engines experience similar valvetrain pressures as 1.8t and their oils have special EP/AW additives for this, newer synthetics use a borate ester package for Extreme Pressure and Anti-Wear) The units of measure are not the sae one on the bottle but "cSt" at +100c, most oils range from 10-15 hot, when cold more like 60-90 or much greater. HT/HS is similar to viscosity, except under high temp/stress conditions, A normal oil is 3, an old-school Euro (A3) 5w-40 is over 3.5. Mobil 1 0w-40 is a 3.6.


Motor Oil 103
Part Three. You have a synthetic mind.

Let us compare mineral and synthetic oils. I will not talk about chemical but rather functional differences. We discussed before how mineral oils are too thick at startup yet too thin when hot. The viscosity was corrected with the hot engine by adding VI improvers.

A 10W-30 multigrade mineral based oil is made from a 10 weight oil and has VI improvers added to thicken the product in a 212 F engine. It acts as a 30 weight oil when hot. It acts more as a 10 weight oil at startup. I remind you that a 10 or 5 or 2 weight oil is still too thick to provide lubrication at startup. They are all too thick at startup. There is currently no engine oil thin enough to operate correctly at startup. They all cause excessive wear at startup. Again, we are discussing the needs of my single hypothetical engine for around town driving.

Oil type.. Thickness at 75 F ..Thickness at 212 F

Straight 30..........250....................10
10W-30...............100....................10
0W-30.................40.....................10

Straight 10..........30.....................6
Straight 5...........20.....................4
Straight 2...........15.....................3
Straight 0...........12.....................3 est.

A 10W-30 synthetic oil is based on a 30 weight oil. This is unlike the counterpart mineral oil based on a 10 weight oil. There is no VI improver needed. The oil is already correct for the normal operating temperature of 212 F. It has a thickness of 10 while you drive to work. It will never thin yet has the same long term problem as the mineral based oil. They both thicken with extended age.

Synthetic oils are derived in the laboratory. They are pure, usually nearly clear. I describe mineral based motor oils as a distilled, concentrated product. The impurities need to be removed from the raw petroleum. These oils are therefore less clean and contain many impurities. Again, the problem is really more of theory than practice but the difference does exist.

People repeatedly say that synthetic oils are more stable in a hot engine. I hear that they lubricate better. The answer is yes and no. Oil molecules do not break down, just the additives. Generally, the synthetic oils do not have VI improvers so have less to lose.

There are some properties of synthetic oils that actually result is less wear than with mineral oils. These help increase your gas mileage as well. Due to a reduction of internal friction of the synthetic oil your engine will run a bit cooler. Wear increases as temperature increases, all other things being constant.

A main advantage that the synthetic has over the mineral based oil is the ability to lubricate at startup. Both types of oil have the same specifications at 104 F, 212 F and 302 F. It is the startup viscosity characteristics that separate these oils. Synthetic oils do not thicken as much on cooling. They have better fluidity as the temperature drops.

A synthetic oil that is labeled as 10W-30 is less honey like as a mineral based 10W-30 motor oil at startup. They both have a thickness of 10 at normal operating temperatures. At 75 F the synthetic is not as thick. At 32 F the difference between the two is even greater. At 0 F the mineral oil is useless yet the synthetic works fairly well. Just keep the RPM to a minimum.

At temperatures below zero you will not be able to start your car with mineral oils while the synthetic oils may be used to -40 or - 50 F. Oils are so thick that the normal method of viscosity measurement is not possible. Instead we measure if the oil can even be pumped or poured. Again, we are only discussing a single category of oil, the multigrade 10W-30 API / SAE grade.

I took an except from the web about Mobil 1 oils. They compared a 5W-30 synthetic Mobil 1 oil to a mineral based 10W-30 and a 10W-40 in ice cold conditions. The engine turned over at 152 RPM with the synthetic 5W-30 Mobil 1. The 10W-30 and 10W-40 mineral oils turned over at 45 and 32 RPM respectively. Neither of those engines started.

Motor oil becomes permanently thicker with exposure to northerly winter type weather. This is more of a problem to mineral based oils. Waxes form. This is why it is a bad idea to even store a bottle of oil in a cold garage. It goes bad on the garage self just because it is exposed to the cold.

To recap, synthetic oils have similar characteristics as mineral oils at operating temperatures. The synthetic oil will however be less honey - like at startup even though it has the same API / SAE rating. Yet the synthetic 10W-30 weight oil is based on a heavier 30 weight oil while the mineral based 10W-30 oil is based on a thinner 10 weight oil. They are both similar at operating temperatures yet the 30 weight based synthetic is actually less thick at startup and much less honey - like at low temperatures. This is the opposite of what common sense dictates.


This is worth repeating: The synthetic 10W-30 weight oil is based on a heavier 30 weight oil while the mineral based 10W-30 oil is based on a thinner 10 weight oil. They are both similar at operating temperatures yet the 30 weight based synthetic is actually less thick at startup and much less honey - like at low temperatures. This is the opposite of what common sense dictates.

As one can see this is no easy topic. Are you with me?



Motor Oil 201
Chapter 10, The graduate.


I am going to bring up the constant flow pump concept. First, it goes back to the principal that doubling the pressure of the same weight oil does not exactly double the flow but it is close. Also doubling the RPM for the same reason does not exactly double the flow but again it is close.

This shows the problem best:

(A) For a 30 wt oil at operating temperature:
RPM....Pressure..Flow
1,000......20 PSI....1
2,000......40 PSI....2
4,000......80 PSI....4
8,000... 160 PSI....8 The maximum flow because of the oil pop off valve at 90 PSI will be 5

(B) For a 30 wt oil at operating temperature
and a higher output oil pump:
RPM....Pressure..Flow
1,000......30 PSI....1.5
2,000......60 PSI....3
4,000....120 PSI....6 The maximum flow because of the oil pop off valve at 90 PSI will be 5
8,000... 240 PSI....12

If we stick with the same weight oil and increase the oil pump output we will increase the pressure and the oil flow too. If we double the oil pump output we will double the pressure and we will double the oil flow.

(C) For a 40 wt oil at operating temperature:
The oil is thicker, has more internal resistance and therefore requires more pressure to get the same flow. Compare this with (A):
RPM....Pressure..Flow
1,000......30 PSI....1
2,000......60 PSI....2
4,000....120 PSI....4 The maximum flow because of the oil pop off valve at 90 PSI will be 3
8,000....240 PSI....8

(D) For a 40 wt oil at operating temperature
and a higher output oil pump:
RPM....Pressure..Flow
1,000......45 PSI....1.5
2,000......90 PSI....3 The maximum flow because of the oil pop off valve at 90 PSI will be 3
4,000....180 PSI....6
8,000... 360 PSI....12

The situations (A) and (C) are close to real life, assuming no loss in the system. This is what happens when you change the 30 weight oil to a 40 weight oil in your car:

(A) For a 30 wt oil at operating temperature:
RPM....Pressure..Flow
1,000......20 PSI....1
2,000......40 PSI....2
4,000......80 PSI....4
8,000... 160 PSI....8 The maximum flow because of the oil pop off valve at 90 PSI will be 5

(C) For a 40 wt oil at operating temperature:
The oil is thicker, has more internal resistance and therefore requires more pressure to get the same flow.
RPM....Pressure..Flow
1,000......30 PSI....1
2,000......60 PSI....2
4,000....120 PSI....4 The maximum flow because of the oil pop off valve at 90 PSI will be 3
8,000....240 PSI....8

At 6,000 RPM the maximum rate of flow has been reached with the thinner oil (A). When you go to 7, 8 or 9,000 RPM you do not get any more flow. You only get a maximum rate of 5. The internal forces on the bearings increase but there is no additional flow of oil.

With the thicker oil you reach maximum flow at 3,000 RPM (C). Worse yet is that the maximum flow is now only 3. As we increase RPM to 4, 5, 6, 7, 8, 9,000 RPM we get no additional pressure and no additional flow, no increase in lubrication.

Next let us look at a 20 weight oil at operating temperature. We get the same flow out of our constant volume pump but the thinner oil requires less pressure to move through the system. This even goes along with the rule that we should use an oil that gives us 10 PSI per 1,000 RPM:

(D) RPM....Pressure..Flow
1,000......10 PSI....1
2,000......20 PSI....2
4,000......40 PSI....4
8,000.. ...80 PSI....8

The maximum flow rate has not been reached. If the engine went to 9,000 RPM then the flow would be 9 at 90 PSI, our maximum pressure at pop off. The engine now has 3 times the flow rate as with the 40 weight oil at full RPM. The nozzles at the bottom of each cylinder are spraying 3 times the amount of oil lubricating and cooling this section. Everything runs cooler and the separation forces in the bearings are 3 times higher.

For engines that redline at 5,000 RPM they usually pop off the oil pressure at 50 to 60 PSI. For engines that go to 8-9,000 RPM the pressures max out at 90-100 PSI. You can now see that you can only get the maximum flow rate if you follow the 10 PSI / 1,000 RPM rule.

The winner: 0W-20 weight oil for my Maranello. I said earlier that I could use a 10 weight oil. I actually only run with 185 F oil temperature around town and the pressures are similar to the 40 weight oil example in (C) above. This is why I also said that in the racetrack condition, with hotter, thinner (0W-20) oil I may actually get the optimal results as in (D) above.

Now let us go back to the Ferrari recommended parameters in my 575 Maranello manual. It calls for 75 PSI at 6,000 RPM. The pop off pressure has not been reached. As we now increase the RPM we still get an increase in flow rate. This is what we need and this is exactly what they are recommending. We get our maximum flow at the maximum system pressure, at about the maximum engine RPM of 7,700. There is no bypassing of the oil. All oil pumped goes through the system. There is no wasted BHP pumping oil past the bypass valve back to the oil tank. It is the perfect system.

Finally I will compare a single, 30 weight oil, at normal (212 F) and at racetrack (302 F) temperatures:

(A) For a 30 wt oil at normal (212 F) operating temperature:
RPM....Pressure..Flow
1,000......20 PSI....1
2,000......40 PSI....2
4,000......80 PSI....4
8,000... 160 PSI....8 The maximum flow because of the oil pop off valve at 90 PSI will be 5

(E) For a 30 wt oil at elevated (302 F) operating temperature. The oil is thinner at 302 F. It requires less pressure to get the same flow:
RPM....Pressure..Flow
1,000......10 PSI....1
2,000......20 PSI....2
4,000......40 PSI....4
8,000......80 PSI....8 The maximum flow because of the oil pop off valve at 90 PSI will be 9

The hotter (302 F) 30 weight oil is thinner than the cooler (212 F) 30 weight oil. It has the same flow rate in the constant volume oil pump but at a lower pressure than the oil at normal operating temperature. This allows for a doubling of the flow rate at peak RPM. The thinning of oil at higher temperatures is a benefit. You get more flow, more cooling and more lubrication.

The 30 weight oil at 302 F has the exact same flow rate and pressures as the 20 weight oil at 212 F. See (D) above. Therefore, use the 20 weight for around town driving and the 30 weight on the hot track. You get maximum flow at each situation.

For YOUR engine, substitute the actual flow at 1,000 RPM. If your engine puts out 1.5 liters/min. at 1,000 RPM it would put out 3 liters/min. at 2,000 RPM and 6 liters/min. at 4,000 RPM and so on. The maximum flow in (A) would be 7.5 liters/min. In situations (D) and (E) you would get a maximum of 13.5 liters/min.


Conclusions:
The reason that multigrade oils were developed in the first place was to address the problem of oil thickening after engine shutdown. Over the years we have been able to reduce the amount of thickening that occurs. Never-the-less there is no oil that does not thicken after you turn your engine off. This is why we have to warm up our engines before revving them up. Engine designers always pick the recommended oil based on a hot engine and hot oil. There is no issue with oil thinning as they are both matched when hot. The problem is oil thickening when the engine cools.

Cold engine showing very high pressures because of the thickened oil at startup:

For a 40 wt oil at 75 F at startup:
The oil is thicker, has more internal resistance and therefore requires more pressure to get the same flow.
RPM....Pressure..Flow
1,000......60 PSI....1
2,000....120 PSI....2 The maximum flow because of the oil pop off valve at 90 PSI will be 1.5
4,000....240 PSI....4
8,000....480 PSI....8

At 1,500 RPM you reach the maximum oil flow rate and if you run to 8,000 RPM it is the same rate. The flow cannot increase and it is insufficient. This is why we must wait until our oil temperature comes up to 212 F or higher. The maximum flow rate in this case will then double, up to 3. To get even more flow in our test engine you need to use a lower viscosity grade.

If you have absorbed and digested the information here you should be able to pick out the proper operating oil weight for your car, be it a 30, 40, 50 or even 20 weight oil. I have always used oils that were a grade thinner than recommended even though many use a grade thicker than recommended. I showed evidence that the starting grade should always be 0 or 5 (0W-XX or 5W-XX for thicker oils). If you want the best protection and highest output from your motor use a synthetic based oil. The actual brand is not as critical as the viscosity. The rating must be SL or the upcoming SM rating. Change your oil every 3 - 5,000 miles and at least every spring.

Final examination to follow later.




PS for those who read the whole thing, I am waiting to use the new Pennzoil Platinum Gas-To-Liquid base oil, or GTL.
Old 12-12-2006, 09:38 AM
  #2  
AudiWorld Super User
 
shwndh's Avatar
 
Join Date: Oct 2002
Posts: 2,672
Received 1 Like on 1 Post
Default

I just wanted to be the first one to reply. Thanx for the info
Old 05-21-2021, 02:51 AM
  #3  
AudiWorld Newcomer
 
Duncan Martin's Avatar
 
Join Date: May 2021
Posts: 1
Likes: 0
Received 0 Likes on 0 Posts
Default

Originally Posted by Audi Junkie
Lighter weight oil is definately the trend. Overseas and in the USA too. 0w-30 is the main racing viscosity due to reduced drag,(Team Abt/SLX, DTM) and it is the best formula for long life because of resistance to thickening (Audi Flexible Service System). 0w- oils represent a new generation, as many already know.

The "W" rating means it is thin while cold,(extreeeemely important in a turbo) the second number is the thickness in the antiquated sae system at operating temp, +100f/+212c. Not much more I can do to prime the pump, either you are into it and get it, or not. It seem intuitive, at the same pressure, I can flow more Vodka into my White Russian than Kaluha...especially at low temps. These articles make the case that lighter oils do more good (flow, cooling, drag, friction, wear, mpg, power) over their operating range (start-up and warm-up and cruise) and thick oils only perform their function under extreme film pressure levels (mega-boost) and there are EP/AW additives in oil that deal with that situation anyway.(diesel engines experience similar valvetrain pressures as 1.8t and their oils have special EP/AW additives for this, newer synthetics use a borate ester package for Extreme Pressure and Anti-Wear) The units of measure are not the sae one on the bottle but "cSt" at +100c, most oils range from 10-15 hot, when cold more like 60-90 or much greater. HT/HS is similar to viscosity, except under high temp/stress conditions, A normal oil is 3, an old-school Euro (A3) 5w-40 is over 3.5. Mobil 1 0w-40 is a 3.6.


Motor Oil 103
Part Three. You have a synthetic mind.

Let us compare mineral and synthetic oils. I will not talk about chemical but rather functional differences. We discussed before how mineral oils are too thick at startup yet too thin when hot. The viscosity was corrected with the hot engine by adding VI improvers.

A 10W-30 multigrade mineral based oil is made from a 10 weight oil and has VI improvers added to thicken the product in a 212 F engine. It acts as a 30 weight oil when hot. It acts more as a 10 weight oil at startup. I remind you that a 10 or 5 or 2 weight oil is still too thick to provide lubrication at startup. They are all too thick at startup. There is currently no engine oil thin enough to operate correctly at startup. They all cause excessive wear at startup. Again, we are discussing the needs of my single hypothetical engine for around town driving.

Oil type.. Thickness at 75 F ..Thickness at 212 F

Straight 30..........250....................10
10W-30...............100....................10
0W-30.................40.....................10

Straight 10..........30.....................6
Straight 5...........20.....................4
Straight 2...........15.....................3
Straight 0...........12.....................3 est.

A 10W-30 synthetic oil is based on a 30 weight oil. This is unlike the counterpart mineral oil based on a 10 weight oil. There is no VI improver needed. The oil is already correct for the normal operating temperature of 212 F. It has a thickness of 10 while you drive to work. It will never thin yet has the same long term problem as the mineral based oil. They both thicken with extended age.

Synthetic oils are derived in the laboratory. They are pure, usually nearly clear. I describe mineral based motor oils as a distilled, concentrated product. The impurities need to be removed from the raw petroleum. These oils are therefore less clean and contain many impurities. Again, the problem is really more of theory than practice but the difference does exist.

People repeatedly say that synthetic oils are more stable in a hot engine. I hear that they lubricate better. The answer is yes and no. Oil molecules do not break down, just the additives. Generally, the synthetic oils do not have VI improvers so have less to lose.

There are some properties of synthetic oils that actually result is less wear than with mineral oils. These help increase your gas mileage as well. Due to a reduction of internal friction of the synthetic oil your engine will run a bit cooler. Wear increases as temperature increases, all other things being constant.

A main advantage that the synthetic has over the mineral based oil is the ability to lubricate at startup. Both types of oil have the same specifications at 104 F, 212 F and 302 F. It is the startup viscosity characteristics that separate these oils. Synthetic oils do not thicken as much on cooling. They have better fluidity as the temperature drops.

A synthetic oil that is labeled as 10W-30 is less honey like as a mineral based 10W-30 motor oil at startup. They both have a thickness of 10 at normal operating temperatures. At 75 F the synthetic is not as thick. At 32 F the difference between the two is even greater. At 0 F the mineral oil is useless yet the synthetic works fairly well. Just keep the RPM to a minimum.

At temperatures below zero you will not be able to start your car with mineral oils while the synthetic oils may be used to -40 or - 50 F. Oils are so thick that the normal method of viscosity measurement is not possible. Instead we measure if the oil can even be pumped or poured. Again, we are only discussing a single category of oil, the multigrade 10W-30 API / SAE grade.

I took an except from the web about Mobil 1 oils. They compared a 5W-30 synthetic Mobil 1 oil to a mineral based 10W-30 and a 10W-40 in ice cold conditions. The engine turned over at 152 RPM with the synthetic 5W-30 Mobil 1. The 10W-30 and 10W-40 mineral oils turned over at 45 and 32 RPM respectively. Neither of those engines started.

Motor oil becomes permanently thicker with exposure to northerly winter type weather. This is more of a problem to mineral based oils. Waxes form. This is why it is a bad idea to even store a bottle of oil in a cold garage. It goes bad on the garage self just because it is exposed to the cold.

To recap, synthetic oils have similar characteristics as mineral oils at operating temperatures. The synthetic oil will however be less honey - like at startup even though it has the same API / SAE rating. Yet the synthetic 10W-30 weight oil is based on a heavier 30 weight oil while the mineral based 10W-30 oil is based on a thinner 10 weight oil. They are both similar at operating temperatures yet the 30 weight based synthetic is actually less thick at startup and much less honey - like at low temperatures. This is the opposite of what common sense dictates.


This is worth repeating: The synthetic 10W-30 weight oil is based on a heavier 30 weight oil while the mineral based 10W-30 oil is based on a thinner 10 weight oil. They are both similar at operating temperatures yet the 30 weight based synthetic is actually less thick at startup and much less honey - like at low temperatures. This is the opposite of what common sense dictates.

As one can see this is no easy topic. Are you with me?



Motor Oil 201
Chapter 10, The graduate.


I am going to bring up the constant flow pump concept. First, it goes back to the principal that doubling the pressure of the same weight oil does not exactly double the flow but it is close. Also doubling the RPM for the same reason does not exactly double the flow but again it is close.

This shows the problem best:

(A) For a 30 wt oil at operating temperature:
RPM....Pressure..Flow
1,000......20 PSI....1
2,000......40 PSI....2
4,000......80 PSI....4
8,000... 160 PSI....8 The maximum flow because of the oil pop off valve at 90 PSI will be 5

(B) For a 30 wt oil at operating temperature
and a higher output oil pump:
RPM....Pressure..Flow
1,000......30 PSI....1.5
2,000......60 PSI....3
4,000....120 PSI....6 The maximum flow because of the oil pop off valve at 90 PSI will be 5
8,000... 240 PSI....12

If we stick with the same weight oil and increase the oil pump output we will increase the pressure and the oil flow too. If we double the oil pump output we will double the pressure and we will double the oil flow.

(C) For a 40 wt oil at operating temperature:
The oil is thicker, has more internal resistance and therefore requires more pressure to get the same flow. Compare this with (A):
RPM....Pressure..Flow
1,000......30 PSI....1
2,000......60 PSI....2
4,000....120 PSI....4 The maximum flow because of the oil pop off valve at 90 PSI will be 3
8,000....240 PSI....8

(D) For a 40 wt oil at operating temperature
and a higher output oil pump:
RPM....Pressure..Flow
1,000......45 PSI....1.5
2,000......90 PSI....3 The maximum flow because of the oil pop off valve at 90 PSI will be 3
4,000....180 PSI....6
8,000... 360 PSI....12

The situations (A) and (C) are close to real life, assuming no loss in the system. This is what happens when you change the 30 weight oil to a 40 weight oil in your car:

(A) For a 30 wt oil at operating temperature:
RPM....Pressure..Flow
1,000......20 PSI....1
2,000......40 PSI....2
4,000......80 PSI....4
8,000... 160 PSI....8 The maximum flow because of the oil pop off valve at 90 PSI will be 5

(C) For a 40 wt oil at operating temperature:
The oil is thicker, has more internal resistance and therefore requires more pressure to get the same flow.
RPM....Pressure..Flow
1,000......30 PSI....1
2,000......60 PSI....2
4,000....120 PSI....4 The maximum flow because of the oil pop off valve at 90 PSI will be 3
8,000....240 PSI....8

At 6,000 RPM the maximum rate of flow has been reached with the thinner oil (A). When you go to 7, 8 or 9,000 RPM you do not get any more flow. You only get a maximum rate of 5. The internal forces on the bearings increase but there is no additional flow of oil.

With the thicker oil you reach maximum flow at 3,000 RPM (C). Worse yet is that the maximum flow is now only 3. As we increase RPM to 4, 5, 6, 7, 8, 9,000 RPM we get no additional pressure and no additional flow, no increase in lubrication.

Next let us look at a 20 weight oil at operating temperature. We get the same flow out of our constant volume pump but the thinner oil requires less pressure to move through the system. This even goes along with the rule that we should use an oil that gives us 10 PSI per 1,000 RPM:

(D) RPM....Pressure..Flow
1,000......10 PSI....1
2,000......20 PSI....2
4,000......40 PSI....4
8,000.. ...80 PSI....8

The maximum flow rate has not been reached. If the engine went to 9,000 RPM then the flow would be 9 at 90 PSI, our maximum pressure at pop off. The engine now has 3 times the flow rate as with the 40 weight oil at full RPM. The nozzles at the bottom of each cylinder are spraying 3 times the amount of oil lubricating and cooling this section. Everything runs cooler and the separation forces in the bearings are 3 times higher.

For engines that redline at 5,000 RPM they usually pop off the oil pressure at 50 to 60 PSI. For engines that go to 8-9,000 RPM the pressures max out at 90-100 PSI. You can now see that you can only get the maximum flow rate if you follow the 10 PSI / 1,000 RPM rule.

The winner: 0W-20 weight oil for my Maranello. I said earlier that I could use a 10 weight oil. I actually only run with 185 F oil temperature around town and the pressures are similar to the 40 weight oil example in (C) above. This is why I also said that in the racetrack condition, with hotter, thinner (0W-20) oil I may actually get the optimal results as in (D) above.

Now let us go back to the Ferrari recommended parameters in my 575 Maranello manual. It calls for 75 PSI at 6,000 RPM. The pop off pressure has not been reached. As we now increase the RPM we still get an increase in flow rate. This is what we need and this is exactly what they are recommending. We get our maximum flow at the maximum system pressure, at about the maximum engine RPM of 7,700. There is no bypassing of the oil. All oil pumped goes through the system. There is no wasted BHP pumping oil past the bypass valve back to the oil tank. It is the perfect system.

Finally I will compare a single, 30 weight oil, at normal (212 F) and at racetrack (302 F) temperatures:

(A) For a 30 wt oil at normal (212 F) operating temperature:
RPM....Pressure..Flow
1,000......20 PSI....1
2,000......40 PSI....2
4,000......80 PSI....4
8,000... 160 PSI....8 The maximum flow because of the oil pop off valve at 90 PSI will be 5

(E) For a 30 wt oil at elevated (302 F) operating temperature. The oil is thinner at 302 F. It requires less pressure to get the same flow:
RPM....Pressure..Flow
1,000......10 PSI....1
2,000......20 PSI....2
4,000......40 PSI....4
8,000......80 PSI....8 The maximum flow because of the oil pop off valve at 90 PSI will be 9

The hotter (302 F) 30 weight oil is thinner than the cooler (212 F) 30 weight oil. It has the same flow rate in the constant volume oil pump but at a lower pressure than the oil at normal operating temperature. This allows for a doubling of the flow rate at peak RPM. The thinning of oil at higher temperatures is a benefit. You get more flow, more cooling and more lubrication.

The 30 weight oil at 302 F has the exact same flow rate and pressures as the 20 weight oil at 212 F. See (D) above. Therefore, use the 20 weight for around town driving and the 30 weight on the hot track. You get maximum flow at each situation.

For YOUR engine, substitute the actual flow at 1,000 RPM. If your engine puts out 1.5 liters/min. at 1,000 RPM it would put out 3 liters/min. at 2,000 RPM and 6 liters/min. at 4,000 RPM and so on. The maximum flow in (A) would be 7.5 liters/min. In situations (D) and (E) you would get a maximum of 13.5 liters/min.


Conclusions:
The reason that multigrade oils were developed in the first place was to address the problem of oil thickening after engine shutdown. Over the years we have been able to reduce the amount of thickening that occurs. Never-the-less there is no oil that does not thicken after you turn your engine off. This is why we have to warm up our engines before revving them up. Engine designers always pick the recommended oil based on a hot engine and hot oil. There is no issue with oil thinning as they are both matched when hot. The problem is oil thickening when the engine cools.

Cold engine showing very high pressures because of the thickened oil at startup:

For a 40 wt oil at 75 F at startup:
The oil is thicker, has more internal resistance and therefore requires more pressure to get the same flow.
RPM....Pressure..Flow
1,000......60 PSI....1
2,000....120 PSI....2 The maximum flow because of the oil pop off valve at 90 PSI will be 1.5
4,000....240 PSI....4
8,000....480 PSI....8

At 1,500 RPM you reach the maximum oil flow rate and if you run to 8,000 RPM it is the same rate. The flow cannot increase and it is insufficient. This is why we must wait until our oil temperature comes up to 212 F or higher. The maximum flow rate in this case will then double, up to 3. To get even more flow in our test engine you need to use a lower viscosity grade.

If you have absorbed and digested the information here you should be able to pick out the proper operating oil weight for your car, be it a 30, 40, 50 or even 20 weight oil. I have always used oils that were a grade thinner than recommended even though many use a grade thicker than recommended. I showed evidence that the starting grade should always be 0 or 5 (0W-XX or 5W-XX for thicker oils). If you want the best protection and highest output from your motor use a synthetic based oil. The actual brand is not as critical as the viscosity. The rating must be SL or the upcoming SM rating. Change your oil every 3 - 5,000 miles and at least every spring.

Final examination to follow later.




PS for those who read the whole thing, I am waiting to use the new Pennzoil Platinum Gas-To-Liquid base oil, or GTL.
This is one of the best things I've read regarding oil. Thank you very much.

Everyone using 10w60 for track days, need to read this.

P. S Not an audi owner
Related Topics
Thread
Thread Starter
Forum
Replies
Last Post
Calvin Craig
S4 / RS4 (B5 Platform) Discussion
1
05-31-2010 05:01 AM
84gtguy
Audi 4000 / Coupe GT Discussion
7
01-07-2009 03:20 PM
dwang
Audi Original "S" Cars
1
11-13-2006 10:40 AM
Audi Junkie
A4 (B6 Platform) Discussion
1
01-27-2005 08:52 PM
RobbyTT
TT (Mk1) Discussion
9
04-01-2001 07:46 PM



Quick Reply: Thick vs Thin oil.



All times are GMT -8. The time now is 09:01 AM.